Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

Abstract

Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis (PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when compared with different modeling methods with different model structures.

 

Link to Article

Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

tivlon
No Comments

Post a Comment

Comment
Name
Email
Website